Refine Your Search

Topic

null

Search Results

Standard

TEST PROCEDURE FOR ELECTRICAL GROUND ATTACHMENTS

2022-02-25
USCAR26
This test procedure is intended to evaluate and/or validate electrical ground schemes for use on the body or chassis. There are two classes based on the expected environmental conditions. Exposed Grounds can be located anywhere in the vehicle (except on the powertrain) and is the class for which most schemes should be tested. Unexposed Grounds can only be used in the passenger compartment or trunk and as such are special cases. This procedure as written is not intended for testing powertrain grounds where high temperatures and vibration levels may be encountered. These situations may require modifications to this procedure and are left to the Responsible Engineer to determine. This specification does not specifically address validation of terminal to wire electrical crimps. Crimps are tested to SAE/USCAR-21
Standard

SPECIFICATION FOR TESTING AUTOMOTIVE HALOGEN LIGHT SOURCES

2022-03-15
USCAR14-3
The procedures contained in this specification cover the laboratory testing of replaceable halogen incandescent bulbs for use in automotive road illumination. The following tests are intended to be run under the following conditions. New bulb design Design or process change made to an existing bulb, which could affect the outcome of the test The completion of one calendar year, accept as noted in the following Test Schedule Table. Test Title Yearly Physical Dimensions X Mean Spherical Candela (MSCD) X External Visual Examination X Color X Leak/Sealability Through Terminals and Seals X Deflection X Fluid Compatibility Terminal Retention X Resonant Frequencies Aged Resonant Frequency Salt Spray Outgassing Temperatures Requirement Laboratory Life at 14.0 VDC X Luminous Intensity Maintenance X Vibration Durability Shock Aged Vibration Durability Terminal Requirements DRL (SAE J2087)
Standard

SPECIFICATION FOR TESTING AUTOMOTIVE HALOGEN LIGHT SOURCES

2002-04-15
USCAR14-1
The procedures contained in this specification cover the laboratory testing of replaceable halogen incandescent bulbs for use in automotive road illumination. The following tests are intended to be run under the following conditions. New bulb design Design or process change made to an existing bulb, which could affect the outcome of the test The completion of one calendar year, accept as noted in the following Test Schedule Table. Test Title Yearly Physical Dimensions X Mean Spherical Candela (MSCD) X External Visual Examination X Color X Leak /Sealability Through Terminals and Seals X Deflection X Fluid Compatibility Terminal Retention X Resonant Frequencies Aged Resonant Frequency Salt Spray Outgassing Temperatures Requirement Laboratory Life at 14.0 VDC X Luminous Intensity Maintenance Vibration Durability Shock Aged Vibration Durability Terminal Requirements DRL (SAE J2087)
Standard

Initiator Technical Requirements and Validation

2005-06-06
USCAR28
This specification establishes the design, performance, and validation requirements for the initiator assembly used in airbag modules, seatbelt pretensioners and/or any other Electro-Explosive Devices (EED).
Standard

Automotive Grade Coaxial Cable Performance Specification

2006-01-02
USCAR29
This document specifies dimensional, functional and visual requirements for Automotive grade coaxial cable. This material will be designated AG for general-purpose automotive applications or AG LL for low loss applications. It is the responsibility of the user of this cable to verify the suitability of the selected product (based on dimensional, mechanical, electrical and environmental requirements) for its intended application. It is the responsibility of the supplier to retain and maintain records as evidence of compliance to the requirements detailed in this standard.
Standard

AUTOMOTIVE GRADE COAXIAL CABLE PERFORMANCE SPECIFICATION

2022-03-15
USCAR29-1
This document specifies dimensional, functional and visual requirements for Automotive grade coaxial cable. This material will be designated AG for general-purpose automotive applications or AG LL for low loss applications. It is the responsibility of the user of this cable to verify the suitability of the selected product (based on dimensional, mechanical, electrical and environmental requirements) for its intended application. It is the responsibility of the supplier to retain and maintain records as evidence of compliance to the requirements detailed in this standard.
Standard

SPECIFICATION FOR TESTING AUTOMOTIVE LED MODULES

2020-08-03
USCAR33-1
This specification is a general level subsystem light source specification that establishes test requirements of light emitting diode (LED) components and modules for use in automotive lighting systems. The completed test data from this test specification is intended to be provided to the OEM by the Tier 1 lamp set maker as part of the lamp assembly PPAP. Re-testing shall be required if any portion of the approved LED module experiences a design, manufacturing, or component change. This document shall be applied to systems that meet the requirements for design, performance, and validation established by government standards. The LED module is defined as the LED devices and any electronics required to properly energize the LEDs using a vehicle electrical power system along with any associated electrical wiring, connectors, and thermal management system. Samples shall be tested as a subsystem and considered one test sample for the entire test sequence.
Standard

SPECIFICATION FOR TESTING AUTOMOTIVE LED MODULES

2013-02-19
USCAR33
This specification is a general level subsystem light source specification that establishes test requirements of Light Emitting Diode (LED) components and modules for use in automotive lighting systems. The completed test data to this test specification is intended to be provided to the OEM by the Tier I lamp set maker as part of the lamp assembly PPAP. Re-testing shall be required if any portion of the approved LED modules experiences a design, manufacturing or component change. This document shall be applied to systems that meet the requirements for design, performance and validation established by government standards. The LED module is defined as the LED devices and any electronics required to properly energize the LEDs using vehicle electrical power system along with any associated electrical wiring, connectors and thermal management system. Samples shall be tested as a subsystem and considered one test sample for the entire test sequence.
Standard

Shipping Caps, Torque Caps, and Body Plugs Ergonomic Design Criteria

2015-03-30
USCAR43
This document describes the design and assembly force guidelines for conventional shipping caps, torque caps, and body plugs. All possible design and applications could not be anticipated in creating these guidelines. Where there are questions of adherence to this document, such as use of an “off-the-shelf” design, always consult the responsible Ergonomics Department.
Standard

PERFORMANCE SPECIFICATION FOR AUTOMOTIVE WIRE HARNESS RETAINER CLIPS

2017-05-10
USCAR44
This specification describes a method and acceptance criteria for testing automotive wire harness retainer clips. Retainer clips are plastic parts that hold a wire harness or electrical connector in a specific position. Typical plastic retainers work by having a set of “branches” that can be inserted into a hole sized to be easy to install but provide acceptable retention. This specification tests retainer clips for mechanical retention when exposed to the mechanical and environmental stresses typically found in automotive applications over a 15-year service life. This specification has several test options to allow the test to match to the expected service conditions. The variability of applications typically arises a) from different ambient temperatures near the clip, different proximity to automotive fluids, different exposure to standing water or water spray and different thicknesses of the holes that the clip is inserted into.
Standard

PERFORMANCE SPECIFICATION FOR AUTOMOTIVE WIRE HARNESS RETAINER CLIPS

2021-01-20
USCAR44-1
This specification describes a method and acceptance criteria for testing automotive wire harness retainer clips. Retainer clips are plastic parts that hold a wire harness or electrical connector in a specific position. Typical plastic retainers work by having a set of “branches” that can be inserted into a hole sized to be easy to install but provide acceptable retention. This specification tests retainer clips for mechanical retention when exposed to the mechanical and environmental stresses typically found in automotive applications over a 15-year service life. This specification has several test options to allow the test to match to the expected service conditions. The variability of applications typically arises from different ambient temperatures near the clip, different proximity to automotive fluids, different exposure to standing water or water spray, and different thicknesses of the holes that the clip is inserted into.
Standard

PERFORMANCE SPECIFICATION FOR AUTOMOTIVE WIRE HARNESS RETAINER CLIPS

2023-03-23
USCAR44-2
This specification describes a method and acceptance criteria for testing automotive wire harness retainer clips. Retainer clips are plastic parts that hold a wire harness or electrical connector in a specific position. Typical plastic retainers work by having a set of “branches” that can be inserted into a hole sized to be easy to install but provide acceptable retention. This specification tests retainer clips for mechanical retention when exposed to the mechanical and environmental stresses typically found in automotive applications over a 15-year service life. This specification has several test options to allow the test to match to the expected service conditions. The variability of applications typically arises from different ambient temperatures near the clip, different proximity to automotive fluids, different exposure to standing water or water spray, and different thicknesses of the holes that the clip is inserted into.
Standard

PERFORMANCE SPECIFICATION FOR WELDED WIRE-TO-WIRE SPLICES

2018-06-14
USCAR45
SAE/USCAR-45 defines test methods and performance requirements for ultrasonically-welded wire-to-wire splices for automotive applications. Face-to-face, butt splice, and center strip configurations per Figure 1 can be tested. The tests defined in this specification subject samples on test to stresses that simulate a lifetime of exposure for a road vehicle. Stresses called out in this specification include thermal shock, temperature/humidity cycling and mechanical stress from different directions.
Standard

COAXIAL CABLE CONNECTOR INTERFACE – SQUARE OUTER CONDUCTOR

2002-02-22
USCAR19
This radio frequency (RF) connector interface specification is suited for unsealed automobile applications up to 2 GHz. Dimensional requirements are specified in this document to ensure interchangeability. This RF connector interface specification is intended for in-line, board mount, device mount, straight or angled applications. Performance requirements are specified in SAE/USCAR-2, and in SAE/USCAR-17.
Standard

COAXIAL CABLE CONNECTOR INTERFACE - SQUARE OUTER CONDUCTOR

2021-08-05
USCAR19-2
This radio frequency (RF) connector interface specification is suited for unsealed automobile applications up to 2 GHz. Dimensional requirements are specified in this document to ensure interchangeability. This RF connector interface specification is intended for in-line, board mount, device mount, straight or angled applications. Performance requirements are specified in SAE/USCAR-2, and in SAE/USCAR-17.
Standard

COAXIAL CABLE CONNECTOR INTERFACE – SQUARE OUTER CONDUCTOR

2003-03-10
USCAR19-1
This radio frequency (RF) connector interface specification is suited for unsealed automobile applications up to 2 GHz. Dimensional requirements are specified in this document to ensure interchangeability. This RF connector interface specification is intended for in-line, board mount, device mount, straight or angled applications. Performance requirements are specified in SAE/USCAR-2, and in SAE/USCAR-17.
Standard

LEAD-FREE SOLDER VALIDATION TEST PLAN

2020-11-19
USCAR40-2
This guideline is applicable to existing lead solder production products that will change to lead-free solder processes to meet the ELV Directive 2000/53/EC Annex II, exemption 8B requirements. This guideline is applicable to similar products used by multiple OEM's that have the same manufacturing processes / equipment. The intent is to streamline the supplier’s environmental testing via common qualification to reduce timing, quantities, and costs.
Standard

Lead-Free Solder Validation Test Plan

2015-04-22
USCAR40-1
This guideline is applicable to existing lead solder production products that will change to lead-free solder processes to meet the ELV Directive 2000/53/EC Annex II, exemption 8B requirements. This guideline is applicable to similar products used by multiple OEM's that have the same manufacturing processes / equipment. The intent is to streamline the supplier’s environmental testing via common qualification to reduce timing, quantities, and costs.
Standard

LEAD-FREE SOLDER VALIDATION TEST PLAN

2011-04-01
USCAR40
This guideline is applicable to existing lead solder production products that will change to lead-free solder processes to meet the ELV Directive 2000/53/EC Annex II, exemption 8B requirements. This guideline is applicable to similar products used by multiple OEM's that have the same manufacturing processes / equipment. The intent is to streamline the supplier’s environmental testing via common qualification to reduce timing, quantities, and costs.
Standard

SPECIFICATION FOR TESTING AUTOMOTIVE LAMP ASSEMBLIES

2022-03-15
USCAR34
The procedures contained in this specification cover the laboratory testing of Exterior Lamps for use in automotive road illumination. The following tests are intended to be run under the following conditions. This document shall be applied to systems that meet the requirements for design, performance and validation established by government standards. If other manufacture’s components are intended to be approved for use in the lamp assembly, then those possible combinations of components shall be considered a new lamp assembly and shall also be tested.
X